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Abstract The vertical structure of clouds unresolved in large‐scale weather prediction and climate
models is controlled by an overlap assumption. When a binary representation (cloud or no cloud) of
subgrid horizontal variability is replaced by a probability density function (PDF) treatment of cloud‐related
variables, a cloud occurrence overlap needs to be replaced by a PDF overlap. The PDF overlap can be
quantified by a correlation length scale, z0, indicating how rapidly rank correlation of distributions at two
levels diminishes with increasing level separation. In this study, we show that z0 varies widely for different
properties (e.g., number and mass mixing ratios) and different hydrometeor types (cloud liquid and ice,
rain, snow, and graupel) and that corresponding fall speed, Vf, is the primary factor controlling the degree
of their vertical alignment, with vertical shear of the horizontal wind playing a smaller role. Linear and
power law parametric relationships between z0 and Vf are derived using cloud‐resolving simulations of
convection under midlatitude continental and tropical oceanic conditions, as well as observations from
vertically pointing dual‐frequency radar profilers near Darwin, Australia. The functional form of z0‐Vf

relationship is further examined using simple conceptual models that link variability in horizontal and
vertical directions and provide insights into the role of Vf and wind shear. Being based on a physical property
(i.e., fall speed) of hydrometeors rather than artificially defined and model‐specific hydrometeor types, the
proposed parameterization of vertical PDF overlap can be applied to a wide range of microphysics
treatments in regional and global models.

1. Introduction

Growing sophistication of microphysics representations in regional and global atmospheric models
combined with the desire for a more uniform treatment of spatial variability across different model
components has spurred several recent attempts to improve parameterization of vertical alignment of cloud
and precipitation properties on subgrid scales. A common approach consists of drawing a number of profiles,
known as subcolumns, which collectively represent predicted horizontal variability at each model level,
while at the same time ensuring the desired correlation of sampled variables in the vertical. The approach
represents an extension of a traditional cloud overlap assumption (also called cloud fraction overlap or cloud
occurrence overlap), used to describe the probability of presence or absence of a cloud at two levels in a
column, to a situation where a given property varies (horizontally) inside the cloud. When the binary
representation (cloud or no‐cloud) of horizontal variability is replaced by a probability density function
(PDF) of cloud or precipitation variables, cloud occurrence overlap is replaced by a PDF overlap (e.g.,
Larson, 2007; Pincus et al., 2005).

Vertical PDF overlap treatment and resulting subcolumns can impact computations of radiative transfer
(e.g., Barker, 2008; Oreopoulos et al., 2004; Paquin‐Ricard et al., 2016; Wang, 2017), output from simulators
for active or passive surface‐ or satellite‐based remote sensors (e.g., Bodas‐Salcedo et al., 2011; Hillman et al.,
2018), or modeled effects of precipitation on thermodynamics and microphysics (e.g., Griffin & L, 2016).
Although in many cases corresponding model components use their own task‐specific subcolumn
generators, it is desirable to employ a consistent overlap treatment throughout the model. Previous studies
have examined vertical alignment of various cloud properties, including radar‐retrieved cirrus ice water
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content (Hogan & Illingworth, 2003), model‐generated total (vapor + cloud liquid and ice) water content
(Pincus et al., 2005), and cloud (liquid + ice) water content (Raisanen et al., 2004; Wang, 2017).
Ovchinnikov et al. (2016) used a cloud‐resolving model to examine the vertical PDF overlap of 10 microphy-
sical variables. that is, number and mass mixing ratios for five hydrometeor types: cloud liquid, rain, cloud
ice, snow, and graupel. They found that the PDF overlap varies widely between these categories and
hypothesized that these variations might be attributable to differences in fall speed of these hydrometeors.

The goal of this study is twofold. First, we seek to quantify the dependency of the PDF overlap on hydrome-
teor fall speed, which was noted by Ovchinnikov et al. (2016) in their analysis of simulated cloud fields.
Second, we aim to provide corroborating observational evidence for this dependency from ground‐based
profiling radars. The rest of the paper is organized as follows. Section 2 describes themodel output and obser-
vational data set used in the analysis and outlines the method for quantifying PDF overlap using a correla-
tion length scale. Results of the analysis, including parametric expression relating correlation length scale
and fall speed, are presented in section 3. Section 4 provides further discussion of the found relationship
between vertical correlation length scale and fall speed and the role of wind shear. Finally, the main findings
are summarized in section 5.

2. Approach
2.1. Model Configuration and Simulations

Model simulations of midlatitude continental and tropical oceanic convection analyzed in this paper are
taken from Wong and Ovchinnikov (2017). A cloud‐resolving model called System for Atmospheric
Modeling, or SAM (version 6.10.6, Khairoutdinov & Randall, 2003), is used to simulate two Intensive
Observation Periods conducted by the U.S. Department of Energy Atmospheric Radiation Measurement
Climate Research Facility over Southern Great Plains (SGP) in north central Oklahoma in June of 1997
(Xu et al., 2002) and near Darwin, Australia, in January of 2006 (the Tropical Warm Pool International
Cloud Experiment, or TWP‐ICE; May et al., 2008). The simulations, hereafter referred to as SGP and
TWP, respectively, use forcing data sets, including initial soundings, surface sensible and latent heat fluxes,
and large‐scale advection tendencies for temperature and moisture, which are available through
Atmospheric Radiation Measurement data archive (http://archive.arm.gov). The model is run on a horizon-
tally uniform rectangular grid with 1‐km spacing in a 128 × 128 km2 domain and a stretched 128‐level ver-
tical grid with grid spacing increasing from 55 m near the surface to 250 m above 6 km. The model top is set
at 27.75 km. The lateral boundaries are periodic in both horizontal directions. The model time steps are 5 s
for SGP and 6 s for TWP simulation, respectively. The slightly shortened time step for SGP reflects stricter
computational stability requirements for modeling more intense vertical motions in continental compared
to the maritime convection. Further datails on the model setup can be found in Wong et al. (2015) and
Wong and Ovchinnikov (2017).

The SGP simulation is run for a 4‐day period from 27 June to 1 July 1997 and TWP simulation is run for 3.5‐
day period from 12 UTC 21 January to 0 UTC 25 January 2006. Unlike Ovchinnikov et al. (2016), where only
selected day‐long periods were examined, here we analyze the whole multi‐day simulations and, therefore,
include a wider range of cloudy conditions. In both simulations, instantaneous three‐dimensional snapshots
of model variables are archived at 10‐min intervals.

The model employs a two‐moment microphysics scheme that predicts mass and number mixing ratios for
cloud liquid and ice, rain, snow, and graupel (Morrison et al., 2005, 2009). Each snapshot provides two‐
dimensional spatial distributions of these variables at each model level and the vertical coherence of these
distributions, or PDF overlap, between adjacent levels is then quantified using a rank correlation coefficient
R, as described in more detail later in this section. Grid cells containing mass mixing ratios larger than
10−4 g/kg and number mixing ratios larger than 103 kg−1 for cloud droplets and 1 kg−1 for rain droplet
and ice particles are included in the analysis. Sensitivity tests indicate that increasing these thresholds by
an order of magnitude has only a minor effect on the presented results.

Figures 1–3 illustrate the time evolution of mean profiles of in‐precipitation rain, snow, and graupel mass
mixing ratios, fractional area coverage, and mass‐weighted fall speeds for the two simulations. The SGP
simulation includes three separate periods of strong convective activity. In the first two periods, the
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fractional area of precipitation reaches about 0.2 (Figure 2), suggesting that they are dominated by isolated
convective cells. The third and strongest event includes a period of extended stratiform precipitation, evident
from precipitation area fraction above 0.6. In the simulation of moister TWP environment, precipitation
occurs through much of the domain after the first few spin‐up hours, with area fraction of snow above
and rain below the melting level averaging near 0.9 (Figure 2). Stratiform precipitation dominates this
simulation, but several periods of enhanced deep convection are evident and correspond to increased rain
and graupel area fraction above the freezing level. The in‐precipitation mean mass mixing ratios, that is,
values horizontally averaged over grid points with corresponding mass mixing ratios larger than
10−4 g/kg, for the three hydrometeor categories are comparable and in the range of a few tenths of a gram
per kilogram (Figure 1). Mass‐weighted fall speeds for the three shown types of hydrometeors are
markedly different (Figure 3). Snow is falling with the slowest speed from a narrow range (1–2 m/s), rain
fall speed is the fastest (4–6 m/s), and graupel fall speed is in‐between these two categories (2–4 m/s).

2.2. Radar Observations

This study uses an extended data set from two wind profilers operated at 50‐ and 920‐MHz frequencies near
Darwin, Australia, during the 2005–2006monsoon season, which includes the TWP‐ICE period. The data set
is described by Kumar et al. (2015), who used it to analyze mass flux characteristics of tropical cumulus
clouds, and by Schumacher et al. (2015), who documented vertical motion statistics segregated by cloud type.
This study relies on vertical air motions retrieved from Doppler spectra from the two profilers using an algo-
rithm by Williams (2012), which avoids making assumptions on hydrometeor fall speeds needed for a single
profiler retrieval (e.g., Giangrande et al., 2016) or mass continuity assumptions used in multi‐Doppler retrie-
vals (e.g., North et al., 2017).

Following Protat andWilliams (2011), a bulk radar reflectivity‐weighted hydrometeor fall speed is found as a
residual of the retrieved vertical air motions and measured mean Doppler velocity of precipitating

Figure 1. Time evolution of horizontally averaged in‐precipitation mass mixing ratio profiles for rain (top), snow (mid-
dle), and graupel (bottom) from Southern Great Plains (SGP, left column) and Tropical Warm Pool (TWP, right col-
umn) simulations.
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Figure 2. Same as Figure 1 but for profiles of fractional area cover.

Figure 3. Same as Figure 1, but for profiles of mass‐weighted hydrometeor fall speeds.
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hydrometeors. Vertical velocity of air and, therefore, fall speeds are not
retrieved below 1.7 km, which is the lowest sampled range of the 50‐
MHz profiler (Williams, 2012), and those levels are excluded from the
present analysis.

Observed radar reflectivity factors, which are proportional to higher‐order
moments of hydrometeor size distributions than number and mass con-
centrations discussed earlier, and corresponding reflectivity‐weighted fall
speeds are used here for analysis of PDF overlap. Observations from a
zenith pointing profiler provide a height‐time curtain view of the atmo-
sphere. PDFs of observed or retrieved variables at each level are then
obtained from time series at that level. These PDFs, and consequently
PDF overlap characteristics, are representative of a certain time period
or convective event. In the presented study, each observational PDF is
derived from day‐long time series.

In the presented analysis, radar reflectivities and fall speeds from the
entire data set are grouped into three subsets based on determined domi-
nant hydrometeor class. A fuzzy‐logic echo classification (Giangrande
et al., 2013, 2016) has been implemented to differentiate between convec-
tive, periphery convective, and stratiform precipitation regions and to
identify possible radar artifacts and nonmeteorological returns. This echo
classification is then combined with observed reflectivity and retrieved fall
speed to assign one of three hydrometeor classes (rain, snow, and graupel)
to each time‐altitude sample.

Although we refer to rain, snow, and graupel classes or hydrometeor cate-
gories in discussing both model and observational results, the following
distinctions must be noted. Because only one type is identified for each
sample volume in radar observations, it should be considered as a predo-
minant type. Hydrometeors of other types are likely to be present at the
same altitude at the same time, but the identified type is assumed to con-
tribute the most to the radar signal. In model simulations, on the other
hand, when a mixture of different hydrometeor types is present in a grid

cell, each type contributes to its own PDF regardless of its relative amount in that mixture. One consequence
of this sampling difference is a larger fractional cover for each hydrometeor type and larger numbers of sam-
ples for their respective distributions in simulations compared to observations. We also note that in the pre-
sented hydrometeor classification, there is no separate category for hail, although the deepest and strongest
convective cores in the observational data set are likely to contain large high‐density ice particles, such as
frozen rain drops or small hail. For these particles to be called a dominant type, however, the core reflectivity
would have to be above 50–55 dBZ. Such high reflectivities occur only rarely in our data set.

Figure 4 illustrates the time evolution of profiles of radar reflectivity factor and retrieved hydrometeor fall
speed and type for one convective event observed on 23 November 2005. A series of progressively stronger
convective clouds passes over the profilers between hours 2 and 10, followed by trailing stratiform clouds last-
ing until 13 hr. Isolated shallower convective clouds are also observed during the last 5 hr of this 24‐hr period.
Stronger convection is characterized by higher cloud tops, as well as higher reflectivity and faster fall speeds.
The hydrometeor classification algorithm identifies that the radar return comes primarily from rain in the
lower part of the convection and rimed ice particles, or graupel, in the upper part. In downdrafts and weak
updrafts, the rain‐graupel boundary is located at or near the melting level, but in strong updrafts it shifts to
higher altitude. In stratiform regions, frozen hydrometeors are classified as snow. Bright band regions are
excluded from consideration by the current classification algorithm and masked out in Figure 4.

Figure 5 shows the Doppler velocity from the 920‐MHz radar and air velocity retrieved from 50‐MHz profiler
for the same day, from which the fall speed of hydrometeors shown in Figure 4 are deduced. While the 920‐
MHz Doppler velocity often provides a good estimate of the fall speed, air motion contribution is significant
at times. For example, a peak of Doppler velocity between 2 and 3 km at 7 hr (Figure 5, top panel) is in a

Figure 4. Radar reflectivity from the 920‐MHz wind profiler (top), retrieved
reflectivity weighted fall speed (middle), and predominant hydrometeor
class (bottom) observed on 23 November 2005.
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region of significant downdraft (Figure 5, bottom panel) and therefore
does not translate into higher fall speed values at this location (Figure 4,
middle panel). Comparable Doppler velocities at similar altitudes 2 hr
later, on the other hand, are in a region of updrafts or weak downdrafts
and, therefore, are caused primarily by precipitation fallout, which is
reflected in high retrieved fall speeds. This highlights the benefits of using
dual wavelength profilers to retrieve hydrometeor fall speeds in this study.

2.3. PDF Overlap

Following Ovchinnikov et al. (2016), the vertical PDF overlap, or align-
ment, is characterized in this study by computing rank correlation (R; or
Spearman correlation coefficient) between distributions of variables at
two levels separated by Δz. R = 1 defines maximum (perfect) overlap
and R = 0 corresponds to random PDF overlap (Ovchinnikov et al.,
2016). Only overlapping parts of distributions are accounted for, that is,
only profiles that include nonzero values at both considered levels are
included in computation of ranking and correlation coefficient. Hence,
at any level, different subsets of points may be used for computing corre-
lation of this level with levels above and below. Because points voided of
hydrometeors are excluded, the resulting correlation is not directly depen-
dent on cloud or precipitation fraction. Note that it would be problematic
to include the condensate‐free areas in this type of correlation because
multiple zero values cannot be unambiguously ranked. These zeros can
be incorporated into the Pearson‐type correlation between actual physical
variables rather than their ranks, although doing so would require taking
special care to mitigate the effect of cloud fraction, or the outer scale, that
is, the size of cloud‐free area outside the convection region included in the
analysis (Marchand, 2012). Using rank correlation instead of Pearson cor-
relation also removes the dependency of R on the shape of the distribution

—for example, its variance, or skewness—and makes it less sensitive to outliers or rare extreme values,
which often strongly impact the Pearson correlation coefficient. It is also worth noting that since the (spatial)
correlation is computed for rank distributions where ranking is done independently for each level, the over-
lap (or correlation) does not directly depend on the vertical gradient of absolute values of the considered vari-
ables. For example, evaporation can reduce the mass mixing ratio of rain drops below cloud base but does
not reduce vertical PDF correlation if the evaporation reduces rain mixing ratio proportionately at every
point in a horizontal layer. Evaporation reduces the vertical PDF correlation only if it switches the ranking
of rain mixing ratios in two or more columns, which might occur if evaporation is horizontally inhomoge-
neous, as will be discussed further in section 4.

Because interlayer correlation is a function of layer separation distance Δz, we convert R into a correlation
length scale z0 by inverting

R ¼ exp −Δz=z0ð Þ (1)

and use z0 as a measure of PDF overlap (e.g., Hogan & Illingworth, 2003; Pincus et al., 2005). Previous studies
found that caution must be applied in using a simple functional form of decorrelation length scale (for cloud
occurrence) over a broad range of separation distances (e.g., Neggers et al., 2011). Our analysis, however, is
confined to a narrow Δz range, from 100 to 250 m, where different functional forms can provide comparable
fits to the R‐Δz relationship. The broader validity of inverse exponential reduction of PDF correlation with
Δz must be examined in the future.

3. Results
3.1. Radar Observations

A total of 54 convective events, or days with convection, are analyzed here. Time‐height distributions of
radar reflectivity factor and retrieved hydrometeor fall speed and predominant type for all events are

Figure 5. Doppler velocity (positive downward) as measured by the 920‐
MHz wind profiler (top) and vertical velocity of air (positive upward)
retrieved from the 50‐MHz profiler (bottom) on 23 November 2005. The sum
of the two gives reflectivity weighted hydrometeor fall speed shown in the
middle panel of Figure 4. Two regions of high Doppler velocities from 920‐
MHz profiler are indicated, one dominated by strong downward air motions
and another due to precipitation (rain) fall speed.
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shown in the supporting information (Figures S1–S3). Figure 6 illustrates
that cloud and precipitation fraction varies widely over these days, from a
few hundredths to 0.6. Here fraction refers to fraction of time when hydro-
meteors are present at a given level and is equivalent to the frequency of
occurrence on that day. The mean fraction is 0.2–0.25 below 4.5 km,
which is an approximate altitude of the melting level, and decreases with
altitude rapidly above that level. Unlike the fractional cover from simula-
tions shown in Figure 2, fraction presented here is a function of not only
the size of the observed convective system but also its position relative to
the profilers that provide a zenith pointing beam view.

Below the melting level the precipitation fraction is attributed almost
exclusively to rain. Above the melting level, the most frequent precipita-
tion type is snow, followed by graupel, and, occasionally, rain. Most of
the events have at least some rain above the melting level, although its fre-
quency is an order of magnitude lower than below the melting level. The
microphysical properties of rain above the melting level also have much
greater spatial and temporal variability, as evident by the profiles of the
mean fall speed (Figure 7). Both high (larger than 10 m/s) and low (less
than 6 m/s) fall speeds are found often above 5 km, but rarely below.
This is likely due to differences in both sampling and physics of rain for-
mation. Above the melting level, rain is associated with relatively narrow
convective towers, and its properties change rapidly in space and time, so
profiles from a narrow column sampled above the radar may deviate sig-
nificantly from a mean profile over a broader area. In addition, rain above
the melting layer is either transported there by strong updrafts or formed
primarily through collision‐coalescence of droplets. Both processes are
most efficient during relatively short periods of active convection develop-
ment, which may explain intermittency in rain properties at these alti-
tudes, while rain below the melting level comes predominantly from
melting snow in more widely spread and steadier stratiform clouds.
Finally, fast fall speeds in the strongest convective cores above the melting
level may be in part due to presence of frozen drops and/or hail.

In the layer between 5 and 8 km, snow is the dominant species in terms
of frequency of occurrence (Figure 6). This hydrometeor category is
most commonly associated with regions of stratiform precipitation,

which last longer and have greater horizontal extent than regions of intense convection. In stronger con-
vection, graupel or heavily rimed particles are identified more often above the melting level. Conditions
for graupel formation are similar to those leading to rain above the melting level, since both require pre-
sence of significant cloud water for riming or collisional growth of graupel or rain, respectively.
Consequently, profiles dominated at higher altitudes by graupel are often intermixed with those domi-
nated by rain (Figures 4 and S3).

As noted above, the variability of reflectivity weighted fall speed for rain is large near and above the melting
level. Below the melting level, where rain is much more prevalent, the mean fall speed of rain is more uni-
form and is typically in the 6–10 m/s range, with an ensemble mean between 7 and 9 m/s depending on the
altitude. The reflectivity weighted fall speed of graupel is slightly lower, with a mean of 6–7 m/s, while the
reflectivity of snow has the slowest effective fall speed between 1 and 2 m/s, which is nearly constant with
height. In interpreting the retrieved fall speed values, it is important to keep in mind that although they
are assigned to a predominant hydrometeor category, they include contributions from other particle types.
Presence of graupel or rain in snow‐dominated pixels, for example, will introduce a high bias in retrieved
snow fall speeds, while retrieved rain fall speeds can be biased low when snow and graupel are present.

Inverse exponential length scale z0 for ranked correlation coefficients computed for PDFs of radar reflectiv-
ity factors at two adjacent levels is shown in Figure 8. Note that for levels that are 100 m apart, as they are in

Figure 6. Profiles of frequency of occurrence of radar‐observed hydrome-
teors at all altitudes for 54 events. Panels from top to bottom are for rain,
snow, and graupel separately. Hydrometeor classification is not performed
below 1.7 km (see text for details). TWP = Tropical Warm Pool.
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the analyzed radar profiler data sets, z0 of 10, 1, and 0.1 km correspond to
rank correlation coefficients of 0.99, 0.90, and 0.37, respectively. It is
important to keep in mind that the correlation length scale computed
from distributions at layers in close proximity to each other only shows
how correlated these distributions are and does not contain information
about actual vertical extent of coherent structures. Thus, it is not surpris-
ing that although there are few, if any, clouds in the presented analysis
that are over 10‐km deep, values of z0 in excess of 10 km are common.
For example, the correlation length scale for PDF of reflectivities com-
puted for rain below the melting level, where rain is the only precipita-
tion type, shows large values (often larger than 10 km). Even higher
values of z0 found for rain above 6 km are coming from infrequent, but
highly vertically coherent, active convective cores. Correlation length
scale for snow is on the order of 1 km. The vertical profile of z0 for grau-
pel is similar to that of rain (above the melting level), but with slightly
lower values.

3.2. Model Simulations

Figure 9 shows z0 for ranked correlation coefficients computed for PDFs
of model‐predicted hydrometeor mass mixing ratios at two adjacent
levels. Unlike Ovchinnikov et al. (2016), who analyzed the behavior of
z0 profiles over selected 24‐hr periods, here z0 evolution is presented for
the entire simulations, although the main features of the mean profiles
remain the same. These include larger z0 (i.e., stronger PDF correlations)
for rain and graupel compared to snow, which is especially evident in the
SGP simulation, and a significantly different PDF correlation for rain mix-
ing ratio above and below the melting level.

While there are obvious similarities between profiles of z0 for radar‐
measured reflectivity (Figure 8) and model‐predicted mixing ratio
(Figure 9), there are also notable differences. Many of these differences
stem from the fact that although rain, snow, and graupel are used as
hydrometeor categories in both observations and model simulations,
there is no one‐to‐one correspondence between them. First, observed
and modeled variables represent different properties of hydrometeors,
that is, reflectivity factor versus mass mixing ratio. (Modeled number mix-
ing ratios are also analyzed, but not shown here). Since these properties
are affected by physical processes with different spatial distributions, their

overlap characteristics are expected to vary as well. The second important distinction, already mentioned
above, is that radar‐based classification assigns a single hydrometeor type to each location, while in the
model representation hydrometeors of several types can coexist at the same location. As a result, extension
of profiles of z0 for snow and graupel below the melting level and low z0 values for rain above the melting
level seen in the model results (Figure 9) may not appear in observational analysis (Figure 8) because the
corresponding hydrometeors are usually not of dominant type at these levels.

3.3. Correlation Length Scale as a Function of Fall Speed

Results presented above and earlier in Ovchinnikov et al. (2016) point to the fall speed as one of the primary
factors controlling the PDF overlap, as measured by the correlation length scale z0. Here, we seek to quantify
the z0—fall speed relationship in a way that can be used in a parameterization of PDF correlation in large‐
scale models.

Scatter plots of z0 from Figures 8 and 9 versus fall speeds from Figures 3 and 7 are shown in Figure 10. Model
results panels also include corresponding parameters for cloud ice mass and number mixing ratios for all
model hydrometeor types, which are not shown in earlier figures. In addition, z0 for cloud liquid water mass
and numbermixing ratios are also computed and used in the analysis, including linear fitting discussed later.

Figure 7. Profiles of radar‐retrieved hydrometeor fall speed for 54 events.
Panels from top to bottom are for rain, snow, and graupel separately. Fall
speed retrievals are not available below 1.7 km. TWP= Tropical Warm Pool.
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These points are not shown in Figures 10a–10c, however, because they
have zero fall speed, which is not displayable on a logarithmic axis.
Although points are spread over 2 orders of magnitude ranges along both
axes, there is a clear trend for increasing z0 with increasing fall speed. The
overall correlation is moderate with linear correlation coefficients
between z0 and fall speed calculated for SGP model, TWP model, and
TWP radar profiler are found to be of 0.62, 0.58, and 0.61, respectively.
By examining the relationship separately for each microphysical variable
or hydrometeor class, which are color coded in Figure 10, we see that the
overall dependency is driven primarily by systematic differences among
these hydrometeor types. Indeed, each category occupies a relative narrow
fall speed band but contains a wide range of z0 values, resulting in low to
no correlation between z0 and fall speed within each species. This is com-
mon for nearly all modeled and observationally diagnosed categories,
except for modeled rain, which shows correlations above 0.5 for both
number and mass mixing ratios in both simulated cases.

Figure 11 summarizes z0—fall speed relationship. Here each point repre-
sents average z0 and fall speed for one microphysical class (variable) for a
particular simulation or observational data set. It must be noted that aver-
aging is performed for rank correlations, rather than correlation length
scales. This is because the two variables have a highly nonlinear relation-
ship between them (see equation (1)), with the rank correlation being the
relevant quantity for drawing subcolumn samples from PDFs. Direct aver-
aging of z0 would lead to a correlation estimate that is biased high. To
mitigate the effect of different layer separation distances, all rank correla-
tions (R) are converted to a nominal Δz = 100 m using (1) before aver-
aging. Once the mean rank correlations for all species are computed,
they are converted, again using (1), back into mean length scales plotted
in Figure 11. Fall speeds are weighted by the corresponding property, that
is, number or mass mixing ratio, or radar reflectivity, when averages are
computed. We also use area fractional cover weighting in computing time
and altitude averages for both z0 and fall speed. A logarithmic scale is cho-
sen for the fall speed axis to better distinguish several slowly falling spe-
cies. Consequently, zero fall speeds for cloud mass and number mixing
ratios cannot be plotted on that axis and their corresponding z0 values
are indicated by horizontal dashed lines color coded by simulated cases
as are the other model species. The plot confirms a strong positive covar-
iance of the correlation length scale and fall speed. A linear regression in
the form

z0 ¼ aþ bVf (2)

with a = 0.69 and b = 0.67 for Vf in meters per second and z0 in kilometers provides a correlation coefficient
of 0.80 (Figure 11). All 23 data points are used in the fit: number andmass mixing ratios for five hydrometeor
classes (cloud liquid, cloud ice, rain, snow, and graupel) for two simulations (SGP and TWP) and three points
for radar reflectivity for rain, snow, and graupel. A nearly identical quality fit is also obtained with a power
law function in the form

z0 ¼ ap þ bpV
cp
f (3)

where ap = 0.38, bp = 1.18, and cp = 0.73.

3.4. Correlation Length Scale Dependence on Wind Shear

When the horizontal wind changes with altitude, distributions of species at different levels shift relative to
each other and therefore become less correlated. To examine this effect, we plot z0 computed from the

Figure 8. Profiles of vertical correlation length scale (z0, km) for radar
reflectivity probability density functions for 54 events. Correlations are
computed for probability density functions of radar reflectivity factor at two
neighboring levels 100 m apart as described in the text. Panels from top to
bottom are for rain, snow, and graupel, respectively. TWP = Tropical Warm
Pool.
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rank correlation of species distribution at two levels against the mean wind shear between these levels
(Figures 10d–10f). The wind shear strength is defined here as the absolute value of the vector difference of
horizontal wind at the two levels divided by the vertical distance between these levels. Such defined wind
shear includes the effects of changes in horizontal wind strength, as well as direction. Observed
horizontal wind components are taken from the 50‐MHz wind profiler on the day of an observed
convective event. For simulations, wind shear is computed from domain mean profiles of horizontal wind
components. Although the wind shear is expected to reduce the vertical coherency of horizontal
distributions, we find that z0 and wind shear are virtually uncorrelated (Figures 10d–10f), with correlation
coefficients of 0.16, 0.13, and 0 calculated for SGP model, TWP model, and TWP radar profiler,
respectively. This is because large systematic differences in vertical overlap among various species
discussed earlier drive much of the overall variability in z0 making it independent of the wind shear.
Analyzing individual species separately, thereby constraining z0 variability to narrower ranges, the effect
of wind shear becomes more pronounced, at least in simulation results. Most modeled species exhibit
some negative correlation between z0 and wind shear, as expected, with generally stronger negative
correlation for species with slower fall speeds, that is, cloud liquid droplet and ice crystals (Figures 10d–
10f). An exception to that rule is a positive correlation between z0 and wind shear for rain properties,
especially in the case of continental convection (SGP, Figure 10d). This positive correlation stems from a
relatively small number of instances when vertically coherent rain shafts with high z0 values go through a
relatively shallow layer with strongest wind shear values at the top of the boundary layer.

4. Discussion

The PDF overlap considered here provides a measure of vertical coherence, or vertical alignment, of hori-
zontal inhomogeneities of clouds and precipitation. Vertical PDF overlap, or, more generally, the three‐

Figure 9. Time evolution of the profiles of vertical correlation length scale (z0, km) for mass mixing ratio probability den-
sity functions for Soithern Great Plains (SGP, left column) and Tropical Warm Pool (TWP, right column) simulations.
Panels from top to bottom are for rain, snow, and graupel, respectively.
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dimensional spatial distribution of microphysical variables, is affected by four categories of processes: spatial
and temporal heterogeneity of sources and sinks, transport of hydrometeors by vertical air motions,
transport (advection) of hydrometeors by horizontal air motions, and sedimentation of hydrometeors to
lower levels. For instance, higher correlation results when certain species are generated within vertically
coherent structures, such as convective towers and/or transported between layers by vertical air motions
(updrafts or downdrafts). Higher correlation also results from rapid sedimentation. Wind shear reduces
the vertical correlation because it disrupts interlayer coupling by tilting updrafts, downdrafts, and
trajectories of falling hydrometeors.

Several attempts to characterize wind shear effects have been made recently. Di Giuseppe and Tompkins
(2015) used overlapping clouds observed by CloudSat and wind fields from ECMWF reanalysis to construct
a parameterization that reduces correlation length scale with increasing wind shear. Li et al. (2018) also used
CloudSat‐derived cloud geometry and ERA‐Interim reanalysis to quantify dependence of correlation length
scale on wind shear. Both studies propose a linear decrease in the correlation length scale with wind shear,
although the strength of the relationship given by the slope parameter varies by as much as a factor of 5 from
z0 = 4.4–0.45 dU/dz in Di Giuseppe and Tompkins (2015) to z0 = 2.19–0.09 dU/dz in Li et al. (2018). It is
important to keep in mind that these studies deal with cloud occurrence, or cloud fraction, overlap, not
PDF overlap considered here, but if the strength of the wind shear effect on PDF overlap were comparable
to these estimates, it appears that the effect of the fall speed would still dominate because the Vf prefactor in

Figure 10. Dependency of the probability density function correlation length scale (z0) on fall speed (a–c) and wind shear (d–f) for model predicted number and
mass mixing ratios and observed radar reflectivity factor for three hydrometeor classes (rain, snow, and graupel), as indicated by the legend on each panel.
Linear correlation coefficients for each of the shown microphysical species are also given in the legends next to a variable name. Cloud droplet number and mass
mixing ratios (NC and QC) are also included on panels (d) and (e) but are omitted from panels (a) and (b) because these species have zero fall speeds. For model
simulations, only every 25th point is shown to improve the readability of the figures. SGP = Southern Great Plains; TWP = Tropical Warm Pool.
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equation (2) is significantly larger than the dU/dz prefactors given above,
while the range of variations in fall speed (0 to 8 m/s) is comparable to that
of the wind shear (0 to 6 m·s−1·km−1).

Figure 11 suggests that z0 can be expressed as varying approximately lin-
early with Vf. When we perform a power law fit, we obtain an exponent
of 0.73 ± 0.25, which indicates a dependency between linear and square
root. To rationalize the functional form of the found empirical relation-
ship, we consider the following idealized example involving evaporation
of rain. Suppose that a layer aloft has a continuous source of a hydrome-
teor species. For concreteness, suppose that the melting of snow generates
rain at the melting level. The source creates a layer with a horizontally
inhomogeneous distribution. Now suppose that the rain drops fall from
the melting level with a mean speed of Vf. Further suppose that falling
rain is subjected to a process with a horizontally inhomogeneous process
rate, such as inhomogeneous evaporation, which acts to change the rank
ordering of the parcels with time. After a time τ, the rank correlation with
the source layer aloft has changed by e−1. At this time, the rain will have
fallen a distance z0, by definition and, therefore, z0 = Vf τ. We see that τ
represents a time scale over which the rank correlation is changed signif-
icantly by a process such as evaporation, or sublimation. Being defined by
the microphysical process, the decorrelation time τ can be independent of
z0 and Vf, in which case z0 becomes proportional to Vf. This conceptual
framework illustrated in Figure 12a should not be taken too literally
because it ignores factors such as size sorting of hydrometeors and time
variations of the source aloft. However, the framework does help clarify
the nature of the decorrelation time, τ, and its influence on the form of
the z0‐Vf relationship.

Now consider a second example in which vertical wind shear rather
than evaporation or another microphysical process is the cause of verti-
cal decorrelation. Namely, consider an idealized situation in which pre-

cipitation from a continuous‐in‐time horizontally inhomogeneous source at one level falls with a mean
fall speed Vf through a layer with a constant wind shear (dU/dz). In this example, we assume that the
horizontal distributions (or, at least, their rank distributions) of precipitation at any altitude below the
source level are identical except for the horizontal shift. The fields at two levels separated by z0 are shifted
relative to each other at a rate of ΔU = (dU/dz)z0 (Figure 12b). In the time that it takes precipitation to
fall the distance z0 with the fall speed Vf, the two fields must be shifted by a distance equal to the hori-
zontal correlation length scale L (the same for all levels under the described example). That is, by defini-
tion, two layers separated vertically by z0 have a rank correlation of e−1 and that degree of decorrelation is
achieved by shifting the layer horizontally by a distance L. Equating the time for the horizontal shift over
the distance L with the time for the fall over the distance z0, we obtain L/ΔU = z0/Vf, which, after sub-
stituting the above expression for ΔU and rearranging, yields z20 ¼ LVf = dU=dzð Þ. Although admittedly
simplistic, this conceptual model suggests that if vertical decorrelation is driven by the horizontal
wind‐shear‐induced shift of layers falling from a horizontally inhomogeneous source, then proportionality
of z0 to the square root of the fall speed should be expected. Note that this would only be the case if all
involved parameters are independent of each other. If, for example, z0 is proportional to L, then we see
that once again z0 goes as Vf to the power of 1.

Looking back at the z0‐Vf relationship expressed in the form of a power law (equation (3)), we note that the
best fit exponent is between 0.5 and 1, which are the values derived from the two idealized examples
described above. Hence, it is possible that although the wind shear is not explicitly accounted for in this
expression, its effect is manifested indirectly through the reduction of the Vf exponent. Further investigation
into the relationship between z0 and horizontal decorrelation length scale, fall speed, and wind shear is
clearly needed.

Figure 11. Mean vertical probability density function correlation length
scale (z0) versus mean fall speed (Vf) for simulated and observed cloud
and precipitation properties. Model properties includemass (circles,Qx) and
number (squares, Nx) mixing ratios for rain, cloud ice, snow, and graupel
for Soithern Great Plains (SGP, blue) and Tropical Warm Pool (TWP, red)
cases. The parameter z0 for nonprecipitating cloud water mass and number
mixing ratios, that is, species with zero fall speeds, are indicated by hori-
zontal long and short dashed lines, respectively. Diamondsmark z0 for radar
reflectivity and associated fall speed for rain, snow, and graupel. The best
linear and power law fits are shown by thick black and green dashed lines,
respectively. Coefficients of these fits plus and minus their standard devia-
tions are also shown in the inserts.
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5. Summary
This study aims to improve the representation of vertical alignment of
cloud and precipitation properties that vary horizontally on a subgrid
scale in climate models. For processes, for example, radiation transfer
and for diagnostics, for example, satellite instrument simulators, for
which the vertical structure of these fields is important, distributions, or
PDFs, of these variables within each model grid cell must be linked in
the vertical using appropriate overlap assumptions. The degree of PDF
overlap is characterized here using rank correlation of variable distribu-
tions at two levels. The dependence of the rank correlation on the layer
separation is mitigated by computing a correlation length scale, defined
as a distance over which the rank correlation drops by a factor of e−1,
assuming exponential decay of correlation with increasing distance
between the layers. This study builds on the work by Ovchinnikov et al.
(2016), who found that the vertical overlap for PDFs of different properties
(i.e., number and mass mixing ratios) and different hydrometeor types
(i.e., cloud liquid and ice, rain, snow, and graupel) varies widely and sug-
gested that corresponding fall speed might be the primary factor control-
ling the degree of their vertical alignment. Here, we quantify the
relationship between the length scale z0 for the correlation between
PDFs of a cloud or precipitation property at two levels and the mean fall
speed Vf for that property using cloud‐resolving model (CRM) simulations
and radar profiler observations. Model output is taken from two multiday
simulations of convection under midlatitude continental and tropical
oceanic convection. Vertical correlation length scale and fall speed are

analyzed for a number of variables or species, including model predicted microphysics variables (number
and mass mixing ratios for cloud liquid and ice, rain, snow, and graupel) and for reflectivity factors observed
by the vertically pointing dual‐frequency radar profilers near Darwin, Australia, from November 2005 to
April 2006. Each z0 and Vf profile corresponds to either an instantaneous snapshot of a 3‐Dmodel‐generated
field or a day‐long height‐time data set from the profilers. When these quantities for each species are aver-
aged over altitude and time, a well‐defined correlation between z0 and Vf emerges (Figure 11). Both linear
and power law functional forms provide comparable fits to the found dependency.

Although it is clear that a number of factors can affect the vertical overlap of PDFs of various cloud and pre-
cipitation properties, the presented study demonstrates that effective fall speed associated with these proper-
ties accounts for the majority of variation in their mean correlation length scale. A simple linear fit exhibits a
high linear correlation coefficient of 0.8 (Figure 11). This fit covers a wide range of fall speeds, from 0 to over
7 m/s, and therefore should be applicable to most microphysics variables used in large‐scale models. Given
that each point on that plot represents an average over many times, altitudes, and different cloud popula-
tions, the relationship must be viewed as statistical, but so is the PDF representation of subgrid variability
of microphysics variables. For each hydrometeor class, z0 varies significantly about the mean (Figures 10),
often with no or weak correlation with Vf. One of the main sources of these variations is height dependencies
of both z0 and fall speed (Figures 3, and 7–9). It might be possible to incorporate altitude (or temperature)
explicitly into a parametric representation of z0, but such a correction will necessarily be dependent on
pre‐defined classes of hydrometeors, making such a parameterization microphysics specific. For example,
based on numerical simulations of tropical maritime convection, Wang (2017) proposed to parameterize
z0 for cloud liquid and ice water content as a piecewise linear function of pressure, with smaller values near
the surface (0.6 km) and tropopause (0.5 km) and larger values (2.3 km) in the midtroposphere. That study
used SAM model with a one‐moment microphysics, in which cloud water diagnosed from the prognostic
total water variable is partitioned into liquid and ice using a simple temperature‐dependent formulation.
Using the samemodel (SAM) with amore elaborate two‐moment microphysics, we find qualitatively similar
z0 profiles for cloud liquid and ice water, but significantly different profiles for rain and other precipitating
species (see also Ovchinnikov et al., 2016). Thus, additional studies are needed to find a more general way to
represent variation of z0 with altitude.

Figure 12. Illustrations of two conceptual mechanisms for sedimentation to
affect a rank correlation of a species distributions at two levels: (a)
Horizontally inhomogeneous environment altering the ranking of parcels in
a layer falling with speed of Vf through a process, such as evaporation, that
reduces the rank correlation by a factor of e−1 in time τ. (b) A layer with a
horizontal correlation length scale L is falling with a speed Vf while experi-
encing a horizontal shift due to vertical wind shear (dU/dz). See text for
more details.
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It is worth emphasizing that the proposed parameterization of the vertical PDF overlap is based on a physical
property (i.e., fall speed) of hydrometeors rather than artificially defined and model‐specific hydrometeor
types. As such, it can be applied to a wide range of microphysics representations in regional and global mod-
els, including not only traditional schemes with pre‐defined discrete ice categories, such as cloud ice, snow,
and graupel, but also emerging treatments using a continuous representation of solid hydrometeors, for
example, the Predicted Particle Properties (P3; Morrison & Milbrandt, 2015) or Ice‐Spheroids Habit Model
with Aspect‐Ratio Evolution (ISHMAEL; Jensen et al., 2017) schemes.

Several recent studies attempted to rationalize and quantify the dependency of a cloud fraction overlap para-
meter on the horizontal scale of the cloud scene used to derive it (e.g., Astin & Di Girolamo, 2014; Tompkins
& Di Giuseppe, 2015). The PDF overlap examined here is also likely to exhibit a scale dependency, as sug-
gested by Hogan and Illingworth (2003). Such a dependency could be important to take into account in
developing parameterizations suitable for models of different horizontal resolutions. In the presented study,
the horizontal extent of the simulation domain is on the order of 100 × 100 km2, whichmakes the result most
directly applicable to the global model grid size approximately 1° × 1°. It is difficult to define a horizontal
scale for a day‐long data set of radar profiles because of the involved time evolution and wind variability
in height (see, e.g., Boutle et al., 2014), but a horizontal wind of few meters per second translates into hun-
dreds of kilometers over the course of the day. Analyzing model subdomains of various sizes and sampling
periods of different lengths in future studies will be useful in adressing the scale dependency of the PDF over-
lap and its relationships with hydrometeor fall speeds and wind shear.
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